志第十八上 歷四上

    《開元大衍歷》演紀上元閼逢困敦之歲,距開元十二年甲子,積九千六百九十六萬
一千七百四十算。

    ○一曰步中朔術

    通法三千四十。

    策實百一十一萬三百四十三。

    揲法八萬九千七百七十三。

    減法九萬一千二百。

    策余萬五千九百四十三。

    用差萬七千一百二十四。

    掛限八萬七千一十八。

    三元之策十五,余六百六十四,秒七。

    四象之策二十九,余千六百一十三。

    中盈分千三百二十八,秒十四。

    朔虛分千四百二十七。

    爻數六十。

    象統二十四。

    以策實乘積算,曰中積分。盈通法得一,為積日。爻數去之,余起甲子算外,得天
正中氣。凡分為小余,日為大余。加三元之策,得次氣。凡率相因加者,下有余秒,皆
以類相從。而滿法迭進,用加上位。日盈爻數去之。

    以揲法去中積分,不盡曰歸余之掛。以減中積分,為朔積分。如通法為日,去命如
前,得天正經朔。加一象之日七、余千一百六十三少,得上弦。倍之,得望。參之,得
下弦。四之,是謂一揲,得後月朔。凡四分,一為少,三為太。綜中盈、朔虛分,累益
歸余之掛,每其月閏衰。凡歸余之掛五萬六千七百六十以上,其歲有閏。因考其閏衰,
滿掛限以上,其月合置閏。或以進退,皆以定朔無中氣裁焉。

    凡常氣小余不滿通法、如中盈分之半已下者,以象統乘之,內秒分,參而伍之,以
減策實;不盡,如策余為日。命常氣初日算外,得沒日。凡經朔小余不滿朔虛分者,以
小余減通法,余倍參伍乘之,用減滅法;不盡,如朔虛分為日。命經朔初日算外,得滅
日。

    ○二曰發斂術

    天中之策五,余二百二十一,秒三十一;秒法七十二。

    地中之策六,余二百六十五,秒八十六;秒法百二十。

    貞悔之策三,余百三十二,秒百三。

    辰法七百六十。

    刻法三百四。

    各因中節命之,得初候。加天中之策,得次候。又加,得末候。因中氣命之,得公
卦用事。以地中之策累加之,得次卦,若以貞悔之策加侯卦,得十有二節之初外卦用事。
因四立命之,得春木、夏火、秋金、冬水用事。以貞悔之策減季月中氣,得土王用事。
凡相加減而秒母不齊,當令母互乘子,乃加減之;母相乘為法。

    各以能法約其月閏衰,為日,得中氣去經朔日算。求卦、候者,各以天、地之策,
累加減之。凡發斂加時,各置其小余,以六爻乘之,如辰法而一,為半辰之數。不盡者,
三約為分。分滿刻法為刻。若令滿象積為刻者,即置不盡之數,十之,十九而一,為分。
命辰起子半算外。

    ○三曰步日躔術

    干實百一十一萬三百七十九太。

    周天度三百六十五,虛分七百七十九太。

    歲差三十六太。

    以盈縮分盈減、縮加三元之策,為定氣所有日及余。乃十二乘日,又三其小余,辰
法約而一,從之,為定氣辰數。不盡,十之,又約為分。以所入氣並後氣盈縮分,倍六
爻乘之,綜兩氣辰數除之,為末率。又列二氣盈縮分,皆倍六爻乘之,各如辰數而一;
以少減多,余為氣差。至後以差加末率,分後以差減末率,為初率。倍氣差,亦倍六爻
乘之,復綜兩氣辰數除,為日差。半之,以加減初末,各為定率。以日差至後以減、分
後以加氣初定率,為每日盈縮分。乃馴積之,隨所入氣日加、減氣下先、後數,各其日
定數。其求朓朒仿此。冬至後為陽復,在盈加之,在縮減之;夏至後為陰復,在縮加之,
在盈減之。距四正前一氣,在陰陽變革之際,不可相並,皆因前末為初率。以氣差至前
加之,分前減之,為末率。余依前術,各得所求。其分不滿全數,母又每氣不同,當退
法除之。以百為母,半已上,收成一。冬至、夏至偕得天地之中,無有盈、縮。余各以
氣下先後數先減、後加常氣小余,滿若不足,進退其日,得定大小余。凡推日月度及軌
漏、交蝕,依定氣;注歷,依常氣。以減經朔、弦、望,各其所入日算。若大余不足減,
加爻數,乃減之。減所入定氣日算一,各以日差乘而半之;前少以加、前多以減氣初定
率,以乘其所入定氣日算及余秒。凡除者,先以母通全,內子,乃相乘;母相乘除之。
所得以損益朓朒積,各其入朓朒定數。若非朔、望有交者,以十二乘所入日算;三其小
余,辰法除而從之;以乘損益率,如定氣辰數而一。所得以損益朓朒積,各為定數。

    南斗二十六,牛八,婺女十二,虛十,虛分七百七十九太。危十七,營室十六,東
壁九,奎十六,婁十二,胃十四,昴十一,畢十七,觜觿一,參十,東井三十三,輿鬼
三,柳十五,七星七,張十八,翼十八,軫十七,角十二,亢九,氐十五,房五,心五,
尾十八,箕十一,為赤道度。其畢、觜觿、參、輿鬼四宿度數,與古不同,依天以儀測
定,用為常數。紘帶天中,儀極攸憑,以格黃道。

    推冬至歲差所在,每距冬至前後各五度為限,初數十二,每限減一,盡九限,數終
於四。當二立之際,一度少強,依平。乃距春分前、秋分後,初限起四,每限增一,盡
九限,終於十二,而黃道交復。計春分後、秋分前,亦五度為限。初數十二,盡九限,
數終於四。當二立之際,一度少強,依平。乃距夏至前後,初限起四,盡九限,終於十
二。皆累裁之,以數乘限度,百二十而一,得度;不滿者,十二除,為分。若以十除,
則大分,十二為母,命太、半、少及強、弱。命曰黃、赤道差數。二至前、後各九限,
以差減赤道度,二分前、後各九限,以差加赤道度,各為黃道度。

    開元十二年,南斗二十三半,牛七半,婺女十一少,虛十,六虛之差十九太。危十
七太,營室十七少,東壁九太,奎十七半,婁十二太,胃十四太,昴十一,畢十六少,
觜觿一,參九少,東井三十,輿鬼二太,柳十四少,七星六太,張十八太,翼十九少,
軫十八太,角十三,亢九半,氐十五太,房五,心四太,尾十七,箕十少,為黃道度,
以步日行。日與五星出入,循此。求此宿度,皆有余分,前後輩之成少、半、太,准為
全度。若上考往古,下驗將來,當據歲差,每移一度,各依術算,使得當時度分,然後
可以步三辰矣。

    以乾實去中積分,不盡者,盈通法為度。命起赤道虛九,宿次去之,經虛去分,至
不滿宿算外,得冬至加時日度。以三元之策累加之,得次氣加時日度。

    以度余減通法,余以冬至日躔距度所入限數乘之,為距前分。置距度下黃、赤道差,
以通法乘之,減去距前分,余滿百二十除,為定差。不滿者,以象統乘之,復除,為秒
分。乃以定差減赤道宿度,得冬至加時黃道日度。

    又置歲差,以限數乘之,滿百二十除,為秒分。不盡為小分。以加三元之策,因累
裁之。命以黃道宿次,各得定氣加時日度。

    置其氣定小余,副之。以乘其日盈、縮分,滿通法而一,盈加、縮減其副。用減其
日加時度余,得其夜半日度。因累加一策,以其日盈、縮分盈加、縮減度余,得每日夜
半日度。

    ○四曰步月離術

    轉終六百七十萬一千二百七十九。

    轉終日二十七,余千六百八十五,秒七十九。

    轉法七十六。

    轉秒法八十。

    以秒法乘朔積分,盈轉終去之;余復以秒法約,為入轉分;滿通法,為日。命日算
外,得天正經朔加時所入。因加轉差日一、余二千九百六十七、秒一,得次朔。以一象
之策,循變相加,得弦、望。盈轉終日及余秒者,去之。各以經朔、弦、望小余減之,
得其日夜半所入。

    各置朔、弦、望所入轉日損益率,並後率而半之,為通率。又二率相減,為率差。
前多者,以入余減通法,余乘率差,盈通法得一,並率差而半之;前少者,半入余,乘
率差,亦以通法除之:為加時轉率。乃半之,以損益加時所入,余為轉余。其轉余,應
益者,減法;應損者,因余。皆以乘率差,盈通法得一,加於通率,轉率乘之,通法約
之,以朓減、朒加轉率,為定率。乃以定率損益朓□肉積,為定數。其後無同率者,亦
因前率。應益者,以通率為初數,半率差而減之;應損者,即為通率。其損益入余進退
日,分為二日,隨余初末,如法求之,所得並以損益轉率。此術本出《皇極歷》,以究
算術之微變。若非朔、望有交者,直以入余乘損益率,如通法而一,以損益朓朒,為定
數。

    七日、初數二千七百一,末數三百三十九。十四日、初數二千三百六十三,末數六
百七十七。二十一日、初數二千二十四,末數千一十六。二十八日,初數千六百八十六,
末數千三百五十四。以四象約轉終,均得六日二千七百一分。就全數約為九分日之八。
各以減法,余為末數。乃四象馴變相加,各其所當之日初、末數也。視入轉余,如初數
已下者,加減損益,因循前率;如初數以上,則反其衰,歸於後率雲。

    各置朔、弦、望大小余,以入氣、入轉朓朒定數,朓減、朒加之,為定朔、弦、望
大小余。定朔日名與後朔同者,月大;不同者,小;無中氣者,為閏月。凡言夜半,皆
起晨前子正之中。若注歷,觀弦、望定小余,不盈晨初余數者,退一日。其望有交、起
虧在晨初已前者,亦如之。又月行九道遲疾,則有三大二小以日行盈、縮累增、損之,
則容有四大三小,理數然也。若俯循常儀,當察加時早晚,隨其所近而進退之,使不過
三大二小。其正月朔有交、加時正見者,消息前後一兩月,以定大小,令虧在晦、二。
定朔、弦、望夜半日度,各隨所直日度及余分命之。乃列定朔、弦、望小余,副之。以
乘其日盈、縮分,如通法而一,盈加、縮減其副。以加夜半日度,各得加時日度。

    凡合朔所交,冬在陰歷、夏在陽歷,月行青道;冬至、夏至後,青道半交在春分之
宿,當黃道東。立冬、立夏後,青道半交在立春之宿,當黃道東南。至所沖之宿,亦如
之。冬在陽歷、夏在陰歷,月行白道;冬至、夏至後,白道半交在秋分之宿,當黃道西。
立冬、立夏後,白道半交在立秋之宿,當黃道西北。至所沖之宿,亦如之。春在陽歷、
秋在陰歷,月行硃道;春分、秋分後,硃道半交在夏至之宿,當黃道南。立春、立秋後,
硃道半交在立夏之宿,當黃道西南。至所沖之宿,亦如之。春在陰歷,秋在陽歷,月行
黑道。春分、秋分後,黑道半交在冬至之宿,當黃道北,立春、立秋後,黑道半交在立
冬之宿,當黃道東北。至所沖之宿,亦如之。四序離為八節,至陰陽之所交,皆與黃道
相會,故月有九行。各視月交所入七十二候距交初中黃道日度,每五度為限,亦初數十
二,每限減一,數終於四、乃一度強,依平。更從四起,每限增一,終於十二,而至半
交,其去黃道六度。又自十二,每限減一,數終於四,亦一度強,依平。更從四起,每
限增一,終於十二,復與日軌相會。各累計其數,以乘限度,二百四十而一,得度。不
滿者,二十四除,為分,若以二十除之,則大分,以十二為母。為月行與黃道差數。距
半交前後各九限,以差數為減;距正交前後各九限,以差數為加。此加減出入六度,單
與黃道相較之數。若較之赤道,則隨氣遷變不常。計去冬至、夏至以來候數,乘黃道所
差,十八而一,為月行與赤道差數。凡日以赤道內為陰,外為陽;月以黃道內為陰,外
為陽。故月行宿度,入春分交後行陰歷、秋分交後行陽歷,皆為同名。若入春分交後行
陽歷、秋分交後行陰歷,皆為異名。其在同名,以差數為加者加之,減者減之;若在異
名,以差數為加者減之,減者加之。皆以增損黃道度,為九道定度。

    各以中氣去經朔日算,加其入交泛,乃以減交終,得平交入中氣日算。滿三元之策
去之,余得入後節日算。因求次交者,以交終加之,滿三元之策去之,得後平交入氣日
算。

    各以氣初先後數先加、後減之,得平交入定氣日算。倍六爻乘之,三其小余,辰法
除而從之,以乘其氣損益率,如定氣辰數而一,所得以損益其氣朓朒積,為定數。

    又置平交所入定氣余,加其日夜半入轉余,以乘其日損益率,滿通法而一,以損益
其日朓朒積,交率乘之,交數而一,為定數。乃以入氣入轉朓朒定數,朓減、朒加平交
入氣余,滿若不足,進退日算,為正交入定氣日算。其入定氣余,副之,乘其日盈縮分,
滿通法而一,以盈加、縮減其副,以加其日夜半日度,得正交加時黃道日度。以正交加
時度余減通法,余以正交之宿距度所入限數乘之,為距前分。置距度下月道與黃道差,
以通法乘之,減去距前分,余滿二百四十除,為定差;不滿者一退為秒。以定差及秒加
黃道度、余,仍計去冬至、夏至已來候數乘定差,十八而一,所得依名同異而加減之,
滿若不足,進退其度,得正交加時月離九道宿度。

    各置定朔、弦、望加時日度,從九道循次相加。凡合朔加時,月行潛在日下,與太
陽同度,是謂離象。先置朔、弦、望加時黃道日度,以正交加時所在黃道宿度減之,余
以加其正交九道宿度,命起正交宿度算外,即朔、弦、望加時所當九道宿度也。其合朔
加時,若非正交,則日在黃道,月在九道,各入宿度雖多少不同,考其去極,若應繩准。
故雲:月行潛在日下,與太陽同度。以一象之度九十一、余九百五十四、秒二十二半為
上弦,兌象。倍之,而與日沖,得望,坎象。參之,得下弦,震象。各以加其所當九道
宿度,秒盈象統從余,余滿通法從度,得其日加時月度。綜五位成數四十,以約度余,
為分;不盡者,因為小分。

    視經朔夜半入轉,若定朔大余有進退者,亦加、減轉日。否則因經朔為定。累加一
日,得次日,各以夜半入轉余乘列衰,如通法而一,所得以進加、退減其日轉分,為月
轉定分。滿轉法,為度。

    視定朔、弦、望夜半入轉,各半列衰以減轉分。退者,定余乘衰,以通法除,並衰
而半之;進者,半余乘衰,亦以通法除:皆加所減。乃以定余乘之,盈通法得一,以減
加時月度,為夜半月度。各以每日轉定分累加之,得次日。若以入轉定分,乘其日夜漏,
倍百刻除,為晨分。以減轉定分,余為昏分。望前以昏、望後以晨加夜半度,各得晨、
昏月。

    各視每日夜半入陰陽歷交日數,以其下屈伸積,月道與黃道同名者,加之;異名者,
減之。各以加、減每日辰昏黃道月度,為入宿定度及分。

    ○五曰步軌漏術

    爻統千五百二十。

    象積四百八十。

    辰八刻百六十分。

    昏、明二刻二百四十分。

    各置其氣消息衰,依定氣所有日,每以陟降率陟減、降加其分,滿百從衰,各得每
日消息定衰。其距二分前後各一氣之外,陟、降不等,皆以三日為限。雨水初日,降七
十八;初限,日損十二;次限,日損八;次限,日損三;次限,日損二;次限,日損後。
清明初日,陟一;初限,日益一;次限,日益二;次限,日益三;次限,日益八;末限,
日益十九。處暑初日,降九十九;初限,日損十九;次限,日損八;次限,日損三;次
限,日損二;末限,日損一。寒露初日,陟一;初限,日益一;次限,日益二;次限,
日益三;次限,日益八;末限,日益十二。各置初日陟降率,依限次損益之,為每日率。
乃遞以陟減、降加氣初消息衰,各得每日定衰。

    南方戴日之下,正中無晷。自戴日之北一度,乃初數千三百七十九。自此起差,每
度增一,終於二十五度,計增二十六分。又每度增二,終於四十度。又每度增六,終於
四十四度,增六十八。又每度增二,終於五十度。又每度增七,終於五十五度。又每度
增十九,終於六十度,增百六十。又每度增三十三,終於六十五度。又每度增三十六,
終於七十度。又每度增三十九,終於七十二度,增二百六十。又度增四百四十。又度增
千六十。又度增千八百六十。又度增二千八百四十。又度增四千。又度增五千三百四十。
各為每度差。因累其差,以遞加初數,滿百為分,分十為寸,各為每度晷差。又累其晷
差,得戴日之北每度晷數。

    各置其氣去極度,以極去戴日度五十六及分八十二半減之,得戴日之北度數。各以
其消息定衰所直度之晷差,滿百為分,分十為寸,得每日晷差。乃遞以息減、消加其氣
初晷數,得每日中晷常數。

    以其日處在氣定小余,爻統減之,余為中後分。不足減,反相減,為中前分。以其
晷差乘之,如通法而一,為變差。以加、減中晷常數,冬至後,中前以差減,中後以差
加;夏至後,中前以差加,中後以差減。冬至一日,有減無加;夏至一日,有加無減。
得每日中晷定數。

    又置消息定衰,滿象積為刻,不滿為分。各遞以息減、消加其氣初夜半漏,得每日
夜半漏定數。其全刻,以九千一百二十乘之,十九乘刻分從之,如三百而一,為晨初余
數。

    各倍夜半漏,為夜刻。以減百刻,余為晝刻。減晝五刻以加夜,即晝為見刻,夜為
沒刻。半沒刻加半辰,起子初算外,得日出辰刻。以見刻加而命之,得日入。置夜刻,
五而一,得每更差刻。又五除之,得每籌差刻。以昏刻加日入辰刻,得甲夜初刻。又以
更籌差加之,得五夜更籌所當辰。其夜半定漏,亦名晨初夜刻。

    又置消息定衰,滿百為度,不滿為分。各遞以息減、消加氣初去極度,各得每日去
極定數。

    又置消息定衰,以萬二千三百八十六乘之,如萬六千二百七十七而一,為度差。差
滿百為度。各遞以息加、消減其氣初距中度,得每日距中度定數。倍之,以減周天,為
距子度。

    置其日赤道日度,加距中度,得昏中星。倍距子度,以加昏中星,得曉中星。命昏
中星為甲夜中星,加每更差度,得五夜中星。

    凡九服所在,每氣初日中晷常數不齊。使每氣去極度數相減,各為其氣消息定數。
因測其地二至日晷,測一至可矣,不必兼要冬夏。於其戴日之北每度晷數中,較取長短
同者,以為其地戴日北度數及分。每氣各以消息定數加減之,因冬至後者,每氣以減。
因夏至後者,每氣以加。得每氣戴日北度數。各因所直度分之晷數,為其地每定氣初日
中晷常數。其測晷有在表南者,亦據其晷尺寸長短與戴日北每度晷數同者,因取其所直
之度,去戴日北度數。反之,為去戴日南度。然後以消息定數加減之。

    二至各於其地下水漏以定當處晝夜刻數。乃相減,為冬、夏至差刻。半之,以加、
減二至晝夜刻數,為定春、秋分初日晝夜刻數。乃置每氣消息定數。以當處差刻數乘之,
如二至去極差度四十七分,八十而一,所得依分前、後加、減初日晝夜漏刻,各得余定
氣初日晝夜漏刻。

    置每日消息定衰,亦以差刻乘之,差度而一,所得以息減、消加其氣初漏刻,得次
日。其求距中度及昏明中星日出入,皆依陽城法求之。仍以差刻乘之,差度而一,為今
有之數。若置其地春、秋定日中晷常數與陽城每日晷數,較其同者,因其日夜半漏亦為
其地定春、秋分初日夜半漏。求余定氣初日,亦以消息定數依分前、後加、減刻分,春
分後以減,秋分後以加。滿象積為刻。求次日,亦以消息定衰,依陽城術求之。此術究
理,大體合通。然高山平川,視日不等。較其日晷,長短乃同。考其水漏,多少殊別。
以茲參課,前術為審。

 
    ------------------
  國學網站獨家推出
上一頁    下一頁